Tentukan luas trapesium di bawah ini

Tentukan luas trapesium di bawah ini

Tentukan luas trapesium di bawah ini.

Tentukan luas trapesium di bawah ini. Dari tahapan pengerjaan diperoleh luas trapesium sebesar  atau 

Pembahasan

Step-1: siapkan perbandingan dasar ΔABC

Pada gambar terlampir telah dibuat segitiga siku-siku ABC dengan ∠A = 30°.

Sesuai ketentuan, angka banding dari panjang sisi-sisinya adalah sebagai berikut:

  • sisi BC yang terletak di hadapan sudut A adalah 1;  
  • sisi AB yang terletak di samping sudut A adalah √3;  
  • sisi miring AC adalah 2

Jadi perbandingan dasarnya adalah BC : AB : AC = 1 : √3 : 2.

Mari kita pertegas sekali lagi. Pada segitiga siku-siku yang memuat sudut-sudut istimewa 30° dan 60°, perbandingan panjang sisi-sisi sebagai berikut:

  • angka banding panjang sisi depan sudut 30° (sisi samping sudut 60°) adalah 1;  
  • angka banding panjang sisi samping sudut 30° (sisi depan 60°) adalah √3;  
  • angka banding panjang sisi miring dengan sudut 30° dan 60° adalah 2.

Ketiga angka banding tersebut memenuhi teorema Phytagoras,  . Ingat, (√3)² = 3.

Pada segitiga siku-siku sama kaki yang memuat sudut-sudut kaki 45°, perbandingan panjang sisi-sisi sebagai berikut:

  • angka banding panjang sisi depan dan samping sudut 45° adalah 1;  
  • angka banding panjang sisi miring sudut 45° adalah √2.

Ketiga angka banding tersebut memenuhi teorema Phytagoras, . Ingat, (√2)² = 2.

Step-2: siapkan panjang sisi-sisi ΔKQL

Perhatikan segitiga siku-siku KLQ pada trapesium dengan ∠K = 30°.

Panjang sisi miring KQ telah diketahui sebesar 1 satuan panjang.

Hubungan antara KQ dan AC adalah KQ = ¹/₂ x AC.

Sehingga untuk memperoleh panjang KL dan QL kita kalikan angka-angka perbandingan dasar dengan ¹/₂.

⇒ KQ bersesuaian dengan AC, jadi KQ = ¹/₂ x 2 = 1

⇒ LQ bersesuaian dengan BC, jadi LQ = ¹/₂ x 1 = 0,5

⇒ KL bersesuaian dengan AB, jadi KL = ¹/₂ x √3 = 0,5√3

Step-3: hitung luas trapesium

  • ΔMNP kongruen dengan ΔKLQ.  
  • Panjang PQ = LM = 1.  
  • Panjang KN = KL + LM + LN, yakni  0,5√3 + 1 +  0,5√3 diperoleh KN = 1 + √3.

Sekali lagi kita pertegas data-data yang diperlukan,

  • panjang sisi atas trapesium = 1 satuan panjang;  
  • panjang sisi alas trapesium adalah KN = 1 + √3 satuan panjang;  
  • panjang tinggi trapesium = 0,5 satuan panjang.

Diperoleh luas trapesium sebesar 

Detil jawaban

Kelas          : VIII

Mapel         : Matematika

BACA JUGA  Cerita si kancil dan petani merupakan salah satu cerita

Bab             : Teorema Phytagoras

Kode           : 8.2.4

 

Kata Kunci : tentukan luas trapesium, di bawah ini, perbandingan panjang sisi-sisi, sudut istimewa, teorema phytagoras, 30, 45, 60, segitiga, siku-siku, panjang, sisi, depan, samping, miring, sama kaki, brainly

error: Content is protected !!